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Abstract

Conceptual knowledge is acquired through recurrent experiences, by extracting statistical regular-

ities at different levels of granularity. At a fine level, patterns of feature co-occurrence are catego-

rized into objects. At a coarser level, patterns of concept co-occurrence are categorized into contexts.

We present and test CONCAT, a connectionist model that simultaneously learns to categorize objects

and contexts. The model contains two hierarchically organized CALM modules (Murre, Phaf, &

Wolters, 1992). The first module, the Object Module, forms object representations based on

co-occurrences between features. These representations are used as input for the second module, the

Context Module, which categorizes contexts based on object co-occurrences. Feedback connections

from the Context Module to the Object Module send activation from the active context to those

objects that frequently occur within this context. We demonstrate that context feedback contributes

to the successful categorization of objects, especially when bottom-up feature information is

degraded or ambiguous.

Keywords: Concept learning; Top-down context influence; Hierarchical categorization; Neural net-

work

1. Acquiring contextualized concepts: A connectionist approach

Whenever we interact with a particular object, we automatically activate stored knowl-

edge about similar objects that we have encountered before. In other words, we activate a

concept, a mental representation referring to a particular class of objects in the world.

Concepts enable us to recognize and categorize objects, to draw inferences about their
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characteristics, and to react to them appropriately. Moreover, we can think and talk about

objects that are not directly present by using our conceptual knowledge of those objects.

Thus, concepts are the basic building blocks of cognition, and they are necessary to under-

stand and interact with the world around us (Murphy, 2004).

Most theories of concept learning assume that conceptual knowledge of objects is

acquired through experience (e.g., O’Connor, Cree, & McRae, 2009; Rogers & McClelland,

2004; Smith, Shoben, & Rips, 1974). During recurrent interactions with different exemplars

of a class of objects (e.g., balls), the features that are invariant across those exemplars (e.g.,

shape), and thus relevant for the category, are extracted and stored in memory to form a con-

cept of the category (the concept BALL1). The features that vary across exemplars (e.g.,

color) are discarded, as well as information about the different contexts in which exemplars

are encountered. These models thus assume that concepts are primarily based on bottom-up

feature information, and they generally ignore the role of context information in conceptual

processing (Yeh & Barsalou, 2006).

However, across many domains of cognition there is evidence that the context profoundly

influences conceptual processing and performance (for an overview, see Yeh & Barsalou,

2006). Studies of visual processing have shown that visual recognition of objects is influ-

enced by context information (for an overview see Bar, 2004). For example, Davenport and

Potter (2004) found that pictures of objects (e.g., a camel) are recognized more accurately

when they are seen in front of a typical background setting (e.g., a desert) than when they

are seen in isolation or in front of an atypical background (e.g., a library). Objects are also

recognized better when they are presented together with a contextually related object than

with an unrelated object (Davenport, 2007). These effects are not limited to visual objects.

A recent study by Özcan and van Egmond (2009) showed that sounds of household products

(e.g., an electric toothbrush) are recognized faster and more accurately when congruent

visual context information (e.g., a picture of a bathroom) is presented than when incongru-

ent information (e.g., a picture of a kitchen) is presented. Context effects were also found in

language processing (e.g., Potter, 1993; Potter, Kroll, Yachzel, Carpenter, & Sherman,

1986; Schwanenflugel & Shoben, 1985; Zeelenberg, Pecher, Shiffrin, & Raaijmakers, 2003)

and in memory tasks, affecting both true memories (e.g., Godden & Baddeley, 1975;

Mandler & Parker, 1976; Mandler & Stein, 1974) and false memories (Miller & Gazzaniga,

1998).

Furthermore, context effects were found in many conceptual tasks. Barsalou (1982) dem-

onstrated that mental concepts are flexible and that their exact content depends on situa-

tional factors such as current goals and task demands. In a property-verification task,

participants were faster to verify contextually relevant than contextually irrelevant proper-

ties. Other studies showed that typicality ratings of category instances depend on the context

in which the instances are presented (e.g., Barsalou, 1982; Hampton, Dubois, & Yeh, 2006).

Finally, context information can contribute to the categorization of novel objects. A recent

study by Chaigneau, Barsalou, and Zamani (2009) showed that novel objects were catego-

rized more accurately when context information was provided than when the objects were

presented in isolation. In addition, inferences about the objects became more accurate as

more context information was presented during categorization.
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Context information thus appears to be very relevant for conceptual processing and for

mechanisms that rely on conceptual representations. To account for this influence, we pro-

pose a connectionist model of concept learning, called CONCAT. This model is based on

the assumption that the conceptual system, while learning object representations, does not

ignore information about the different contexts in which these objects appear, but instead

uses this information to form context representations. This aspect distinguishes CONCAT

from existing models of concept learning, which typically assume that context information

is ignored during the process of learning object representations. We assume that object rep-

resentations and context representations are acquired in similar ways: by extracting the sta-

tistical regularities that emerge from repeated experiences. Such regularities can be detected

at various temporal and spatial scales. At a fine scale, patterns of co-occurrence between

low-level sensory-motor features (e.g., <red>, <round>, <soft>, <bouncing>) emerge,

because the features belonging to a particular object tend to be grouped in time and space.

These patterns of feature co-occurrence can be used to form object representations. At a

coarser scale, patterns of co-occurrence between objects emerge. Objects are not distributed

randomly in the world but tend to co-occur in time and space with other objects, resulting in

coherent scenes or contexts. For example, fridges are typically found in kitchens and tend to

co-occur with other objects that are often found in kitchens, such as ovens, stoves, sinks,

and pans. A context can thus be defined as a coherent collection of objects that co-occur
within a certain window of time and space. Thus, a room is defined as a kitchen by the

objects that are typically found in kitchens. The idea that a context can be described as a pat-

tern of co-occurring objects is not entirely new. For instance, Bar (2004) proposed the term

‘‘context frame’’ as a representation of a prototypical scene, containing information about

the objects that are most likely to appear in this scene. Likewise, Tversky, Zacks, and Martin

(2008) argued that scenes (contexts) are characterized by the activities that take place in

them and the objects that occur in them. These objects are not distributed randomly across a

scene, but their spatial arrangement is loosely constrained by the scene (see also Bar, 2004;

Biederman, Mezzanotte, & Rabinowitz, 1982). For example, in a dining room, chairs are

typically grouped around a table, a lamp is usually hanging above the table and food is

placed on the table, rather than on the chairs. Although highly informative, spatial informa-

tion is not used in our model. For the current purposes, a context is defined only as a pattern

of co-occurrence between objects, disregarding information about their typical spatial

arrangements.

In the model, associative connections exist between object representations and context

representations. Activating a particular object representation will lead to activation of the

context representations that are associated with this object. In turn, activating a context will

prime objects that are likely to occur within this context. As a result of the connections

between context representations and object representations, the latter contain not only fea-

ture information but also information about the contexts in which an object typically occurs.

This is in line with the results of a property norming study of McRae, Cree, Seidenberg, and

McNorgan (2005), who collected semantic properties for a large number of living (e.g.,

DOG) and nonliving objects (e.g., CHAIR). Participants were asked to list as many proper-

ties as possible for each object. Interestingly, participants not only provided sensory-motor
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features such as <red> and <round>, but they also mentioned the contexts in which objects

are typically found. For example, <found in kitchens> was often provided for the concept

KNIFE. This shows that context information is an intrinsic and relevant part of object repre-

sentations, which spontaneously comes to mind when people are thinking about a particular

object.

Thus, object representations are based on two sources of information: feature-based or

experiential data, and context-based or distributional data.2 With respect to the former, we

are basing our reasoning on the Theory of Event Coding (TEC; Hommel, Müsseler,

Aschersleben, & Prinz, 2001), which assumes that stimulus and action events are cogni-

tively represented in terms of their distal features, such as shape, size, distance, and location,

rather than to proximal features of the sensations elicited by stimuli (e.g., retinal location) or

of the motor patterns of an action (e.g., the contraction of specific muscles). For example, a

left-hand response and a stimulus on the left both activate the same distal code ‘‘left.’’

We take feature-based information to refer to all the features (also called properties or

attributes) of a particular category that are acquired through interactions with different

exemplars of that category. This includes perceptual information from various sensory

modalities, referring to the category’s typical shape, color, smell, taste, and feel but also

affective information and information about the actions afforded by (exemplars of) the given

category. The similarity between two concepts is partially defined by the degree to which

their features overlap (see also McRae, 2004). In addition to this experiential information,

object representations are based on distributional information, which refers to the different

contexts in which an object is encountered (see also Barsalou & Wiemer-Hastings, 2005).

Objects may occur in a range of different contexts. The similarity between two objects is

therefore also defined by the degree to which they share the same contexts.

Although we focus only on object representations and context representations, we

acknowledge that other levels of representation could be distinguished as well. For example,

concepts can represent low-level perceptual features (e.g., RED), object parts (e.g., LEG),

actions (e.g., THROW), and events (e.g., WEDDING). These concepts differ in the level of

granularity, and each concept can encompass other concepts. Thus, representations are

formed at multiple hierarchical levels, and each level essentially forms the context for the

level below. For the sake of parsimony, we distinguish only the two levels mentioned above.

Importantly, the suggested model can easily be applied to object configurations, actions, and

other events, and it can be extended to capture hierarchical relations between these entities.

Summarizing, we assume that object representations and context representations are

acquired over the course of multiple experiences, by extracting statistical regularities at vari-

ous temporal and spatial scales. At a small scale, features that co-occur in time and space

are bound into object representations. At a coarser scale, objects that co-occur in time and

space are bound into context representations. Object representations and context representa-

tions are connected to each other, such that a particular object will activate the contexts in

which it frequently appears and reversely, a particular context will activate the objects that

are likely to occur within this context. Object representations are based on two sources of

information; experiential data, bottom-up information about the (sensory, motor, affective,

etc.) features that are relevant for interaction with the object, and distributional data,
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top-down information about the different contexts in which the object is likely to occur.

These functional principles are implemented in a connectionist model, named CONCAT,

which simultaneously learns to categorize objects and contexts.

2. The model

2.1. Model overview, architecture, and functional logic

At the core of the CONCAT model are two Categorization and Learning Modules

(CALM; Murre et al., 1992; Murre, 1992). A CALM module is able to perform unsuper-

vised categorization of distributed input patterns in a localist fashion (see also Page, 2000).

CALM modules display two modes of learning, depending on the novelty of the input pat-

tern (Graf & Mandler, 1984; Wolters & Phaf, 1990). When a novel input pattern is pre-

sented, elaboration learning takes place. An increased learning rate combined with the

distribution of nonspecific, random activations in the module results in strong competition

between the uncommitted nodes (those nodes that do not yet represent a pattern). As a

result, the input pattern is associated with a node that is not yet committed by any other pat-

tern. When a familiar input pattern is presented, activation learning takes place. A low

learning rate and weak competition between nodes result in the activation and strengthening

of the existing representation. Multiple CALM modules can be combined to construct a

modular neural network that is able to perform hierarchical categorization. CALM networks

thus contain some psychologically and biologically plausible properties, such as modularity,

unsupervised learning and novelty-dependent learning (Murre et al., 1992).

In CONCAT, depicted in Fig. 1, two CALM modules are implemented to perform a hier-

archical categorization of input patterns. The first CALM module, the Object Module, uses

feature co-occurrences to form object representations. These representations are used as

input for the second CALM module, the Context Module, which forms context representa-

tions based on object co-occurrences. The CONCAT model incorporates two activation

streams; a bottom-up or feedforward stream and a top-down or feedback stream. The feed-

forward stream originates at the input layer, called Feature Detection Layer. In this layer, a

perceived object is represented as a distributed pattern of activation across nodes represent-

ing different features from various sensory modalities, as well as affective and affordance

features. We assume that some preprocessing of the raw sensory signal has already taken

place, such that the Feature Detection Layer represents features in a subsymbolic but distal,

rather abstract way (Heider, 1959 [1926]; Hommel et al., 2001). The patterns of activation

in the input layer are categorized by the Object Module, by mapping different input patterns

onto different nodes in the module.

Following categorization by the Object Module, information is propagated, through sev-

eral layers of internodes (see Fig. 2), to a next layer, called Memory Buffer. The Memory

Buffer is similar to the Conceptual Short Term Memory (Potter, 1993), retaining the most

recently activated concepts. As a result, a pattern of activation arises in the Memory Buffer,

representing the co-occurrence of objects across a stretch of time. This pattern is used as
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input for the next level, the Context Module. Importantly, input patterns are not presented in

completely random order, but they appear in coherent clusters of co-occurring patterns,

which can be regarded as different contexts. As a result of this clustering, the activation pat-

terns in the Memory Buffer show some regularities, which are picked up and categorized by

the Context Module. In addition to this feedforward stream of information, feedback con-

nections provide top-down input from the Context Module to the Object Module. These

feedback connections are modified through a form of novelty-dependent competitive

Hebbian learning (for details, see below). Due to the feedback connections, objects are

effectively represented not only by bottom-up feature information but also by top-down con-

text information.

2.2. Processes

The CONCAT model learns to categorize objects that are distributed over a number of

different contexts. Therefore, input patterns are not presented in completely random order,

but they are grouped within clusters of contextually related patterns. As a metaphor, think of

someone walking through a house and opening doors to different rooms in that house. When

looking into a specific room, attention shifts from one object to the other, in order to recog-

nize and categorize those objects as, for example, a faucet, a toaster, an oven, and a fridge.

Once a sufficient number of objects have been recognized, the room (i.e., context) can be

reliably categorized as a kitchen. Had one seen a faucet, shower, towels, and a bath instead,

the room would have been categorized as a bathroom. Thus, the collection of objects deter-

mines what kind of room (i.e., context) one is looking at. In order to simulate this procedure,

. . . . Feature Detection Layer

Object Module

Context Module

. . . .

. . . .

. . . . Memory Buffer

Interlayers

Convergence Node
Feedback

connections

Fig. 1. CONCAT architecture.
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several contexts are created. A context is defined as a collection of various input patterns

(objects). Because input patterns may occur in multiple different contexts (just like some

objects can be found in various different rooms), contexts are partially overlapping.

In order to learn the different contexts, the model experiences multiple contextual epi-

sodes (cf., opening the various doors in a house). During a contextual episode (see Fig. 3), a

context is selected and all patterns belonging to the selected context are presented sequen-

tially, in random order. A pattern is presented on the Feature Detection Layer, and catego-

rized by the Object Module based on the bottom-up feature information. Activation is

forwarded, through several layers of internodes, to the Memory Buffer. Although activation

spreads through the network at every iteration, due to the wiring of the internodes (explained

in more detail below) activation does not reach the Memory Buffer until the Object Module

has reached convergence (i.e., the pattern has been categorized). In other words, the Mem-

ory Buffer only represents concepts that have been fully categorized by the Object Module.

After a fixed number of iterations, the presentation of the input pattern is terminated. Before

presenting a new input pattern from the same context, there is a delay during which the

model does not receive any input pattern. This delay is implemented in order to let the acti-

vations of the Object Module decay to zero. Since the Memory Buffer has a much slower

decay rate than the Object Module, the active concept is retained in the Memory Buffer

throughout the delay that resets the Object Module. After the delay, the next pattern of the

current context is presented and categorized in a similar way as the first pattern. Again,

activation is forwarded to the Memory Buffer, where the previously activated node is still

somewhat active. As a result, a pattern of activation gradually arises in the Memory Buffer,

reflecting the most recently categorized concepts. Once the total amount of activation in the

. . .  

Object Module. . .

. . .

. . .

. . . Memory Buffer

Inhibitory internodes

Excitatory internodes

Feeding internodes

1
1

5

1 -5

Fig. 2. Wiring of internodes.
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Memory Buffer reaches a certain level, the pattern of activation is categorized by the

Context Module.

From the Context Module, activation is propagated down to the Object Module through

modifiable feedback connections. The strength of these connections is adapted through

Hebbian-like learning, such that connections get stronger when the sending context node

and the receiving object node are concurrently active, and they get weaker when one node is

active while the other one is inactive. Thus, the strength of a feedback connection reflects

how often a particular object has occurred in a given context. As a result, the winning con-

text node sends top-down activation to objects proportional to their occurrence within this

context. As will be demonstrated by several simulations (see below), this top-down context

activation may influence (and often improve) the categorization of objects, especially when

the bottom-up featural input is ambiguous or degraded. In the case of an ambiguous input

pattern, multiple object nodes may get activated, resulting in a competition between those

nodes. Top-down activation from the active context selectively increases the activation of

the node representing the object that is most likely given the current context. This node,

representing the ‘‘expected’’ object, therefore has a higher chance of winning the competi-

tion. A similar process takes place when the input is degraded. In this case, the bottom-up

(A) (B)

(C) (D)

Fig. 3. Snapshots of activation propagation in the model. The figure only shows the Feature Detection Layer,

Object Module, Memory Buffer, and Context Module. Four different input patterns belonging to the same con-

text are presented. In Panel A, the first input pattern is presented, categorized by the Object Module and stored

in the Memory Buffer. In Panel B, the second input pattern is categorized and stored in the Memory Buffer.

In Panel C, the third input pattern is categorized and stored in the Memory Buffer. The total activation of the

Memory Buffer now exceeds a certain value, resulting in activation of the Context Module, which categorizes the

pattern in the Memory Buffer. In Panel D, the activated context node sends top-down (voltage-dependent) input

to all associated concept nodes. This facilitates the categorization of a new pattern belonging to the same context.
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input may be too weak to activate the correct object node to a sufficient degree to let it win

the competition. The activation of this object node can be enhanced by a top-down signal

from the current context. In other words, contextual feedback can make object nodes more

sensitive to patterns belonging to the currently active context. This characteristic of the

model is in accordance with several experimental findings that objects are more accurately

recognized when they are presented within a relevant context than in isolation or in an irrel-

evant context (e.g., Davenport & Potter, 2004; Özcan & van Egmond, 2009).

Once all patterns of a context have been presented, the contextual episode is finished with

an empty delay, in order to let all activations in the network decay to zero. Of course, in real

life, episodes are not separated by a delay. Instead, information about the world enters our

senses continuously. According to the Event Segmentation Theory (Zacks & Swallow,

2007), people parse this continuous input into discrete events.3 Simulations with a computa-

tional model of event segmentation have demonstrated that event boundaries can be reliably

detected in a continuous stream of input (Reynolds, Zacks, & Braver, 2007). In CONCAT,

this aspect was bypassed by presenting discrete episodes that were separated by a delay.

However, the work of Zacks and colleagues (Zacks, 2004; Reynolds et al., 2007) shows that

it is not unreasonable to assume that continuous input is parsed into discrete events, and that

event boundaries can be used to reset the activations in the model.

2.3. Node activation rule

The input ei to each network node i may be either excitatory (positive) or inhibitory (neg-

ative). The activation of a generic CONCAT node i at the iteration (t + 1), ai(t + 1), is

described by the following rule:

aiðtþ 1Þ ¼ ð1� kÞ aiðtÞ þ
ei

1þ ei
1� ð1� kÞaiðtÞ½ � ei � 0 ð1aÞ

¼ ð1� kÞaiðtÞ þ
ei

1þ ei
ð1� kÞ aiðtÞ ei<0 ð1bÞ

where ei ¼
P
j

wij ajðtÞ

k is an activation decay term, wij denotes the connection weight from node j to node i. This

activation rule ‘‘squashes’’ the input to a number between 0 and 1, and ensures that the

increase in activation due to input excitation, or the decrease in activation due to input inhi-

bition, diminishes as the activation approaches the maximum or the minimum, respectively

(asymptotic approach).

2.4. Internal structure of object and context modules

The Object Module and Context Module are so-called CALM modules (Murre et al.,

1992), consisting of different types of nodes that are connected to each other (see Fig. 4) by

fixed weights. The weight values were taken from Murre et al. (1992) and are provided in

Table A1. We would like to refer the reader to the original paper of Murre et al. for the
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guiding principles underlying the model’s structure and its parameters. ‘‘Representational-

nodes’’ (furthermore called R-nodes) are the only nodes that receive external input. In order

to create competition between R-nodes, each R-node activates a matched ‘‘Veto-node’’

(V-node), which inhibits all other nodes in the module. In particular, V-nodes are character-

ized by mutual inhibition; they strongly inhibit unmatched R-nodes, but they inhibit their

matched R-node only weakly. The modules also contain an ‘‘Arousal-node’’ (A-node),

which is sensitive to the novelty of the input pattern. In a sense, activation of the A-node

can be regarded as a representation of the arousal response, which may result in an orienta-

tion reaction (e.g., Sokolov, 1963). Given the specific wiring pattern of the connections in a

CALM module (see Fig. 4), the activation of the A-node is a positive function of the amount

of competition in a module. Since competition is higher when a novel pattern is presented

than when a familiar pattern is presented, the A-node activation essentially reflects the nov-

elty of a given input pattern. Finally, an ‘‘External-node’’ (E-node), which might corre-

spond to an arousal center external to the module (e.g., a subcortical center in the brain),

receives input from the A-node of the module and sends random activation pulses to all

R-nodes in the same module. These random pulses are uniformly distributed over the range

0; aEðtÞ½ �, where aE(t) stands for the activation of the E-node at the iteration t.

2.5. Learning rule

Full connectivity is assumed from node layers projecting onto the Object Module (from

the Feature Detection Layer and the Context Module) and the Context Module (from the

Memory Buffer). The weights of these connections (interweights) are modifiable in the

range [0, K]. The learning rule used in CALM networks (Murre et al., 1992) is a variation

of Grossberg’s (1976) learning rule, which is related to the Hebb rule (Hebb, 1949). The

learning rule is expressed by the following formula:

. . . .

strange

AE

down

cross

low

flat

high

 up

E-Node

A-Node

V-Nodes

R-Nodes. . . .

CALM Module

Fig. 4. CALM Module.
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Dwij ¼ lt ai ðK� wijðtÞÞaj � LwijðtÞ
X
f6¼j

wifðtÞaf

" #
ð2Þ

where i, j, and f are R-nodes, L and K are positive constants. The first term within the brack-

ets represents weight increases, whereas the second term determines the background-depen-

dent weight decrease. The symbol lt denotes the variable learning rate at iteration t, which

is computed as follows:

lt ¼ dþ wlE aE ð3Þ

where d is a constant and aE is the activation of the E-node. The learning rate is thus depen-

dent on the activation of the E-node, which is more active when a novel pattern is presented

than when an old pattern is presented (for a more extensive explanation of the underlying

process, see Murre et al., 1992). As a result, the learning rate of both the Object Module and

the Context Module are dependent on the novelty of the pattern or context, respectively.

Fig. 5 displays the learning rate of both modules during multiple presentations of the same

input pattern. During the first presentation of a pattern or context, the learning rate is quite

high, but it quickly drops to a lower level, indicating a shift from elaboration learning to

activation learning.

To bind interweights in the range [0, K], the following condition is included:

wijðtþ 1Þ ¼ max min½wijðtÞ þ Dwijðtþ 1Þ;K�; 0
� �

ð4Þ

The learning parameters used in the simulations are specified in Tables A2 and A3.

0,003

0,004

0,005

0,006

1 2 3 4 5 6 7 8 9 10

Presenta�on

Le
ar

ni
ng

 ra
te

0,007

Fig. 5. Learning rate (l) of the Object Module during subsequent presentations of the same input pattern.
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2.6. Connection chain from the object module to the context module

As shown in Fig. 2, a sequence of intermediate nodes (internodes) is placed between the

Object Module and the Memory Buffer, which in turn sends output to the Context Module.

These internodes ensure that nodes in the Memory Buffer do not get activated until conver-

gence has been reached in the Object Module. In other words, the Memory Buffer only

retains objects that have been categorized by the Object Module. To this end, the R-nodes

of the Object Module send excitatory input to a matched ‘‘Excitatory-internode’’ (E-inter-

node) and to a matched ‘‘Inhibitory-internode’’ (I-internode). In turn, the matched E-inter-

node forwards excitatory input to a matched ‘‘Feeding-internode’’ (F-internode), whereas

the matched Inhibitory-internode forwards inhibitory input to all other unmatched F-inter-

nodes. Each F-internode, matched backward to an Object R-node, sends activation to a

matched node in the Memory Buffer.

The excitatory input to the R-nodes of the Context Module includes input from individual

Memory Buffer nodes, multiplied by modifiable interweights, and from a ‘‘Convergence

node’’ (C-node), the excitatory input of which is described by a sigmoidal function of the

sum of the activations of all Memory Buffer nodes, as follows:

inputcðxÞ ¼
1

1þ expð�bðx� hÞÞ ð5Þ

As the Context Module R-nodes receive a fixed amount of tonic inhibition, Inht, the input

from the C-node unselectively enables activation of the R-nodes in the Context Module,

which becomes selective with the differential modification of the interweights from Memory

Buffer nodes to Context Nodes. This enabling mechanism plays a functional role to make

activation of the Context Module dependent on the number of active nodes in the Memory

Buffer. The weight values and equation parameters of the model are specified in Tables A4

and A5.

3. Simulations

3.1. Simulation I: Simultaneous categorization of objects and contexts

CONCAT is not the first model that displays hierarchical categorization and the role of

top-down feedback on categorization. The most well-known example is probably

McClelland and Rumelhart’s (1981) interactive activation model. Although applied to a dif-

ferent domain (visual word and letter recognition), their model is based on similar assump-

tions as our model (see also Kintsch, 1988). First, they assume that perceptual information

is processed at different levels, ‘‘each concerned with forming a representation of the input

at a different level of abstraction’’ (p. 377). They distinguish three levels, representing

visual features, letters, and words, which could be aligned with the three levels of
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CONCAT, representing sensory-motor features, objects, and contexts. Furthermore, they

assume that categorization at the middle level (the letter level) is the result of the interaction

between bottom-up information from the feature level and top-down information from the

word level, which is highly similar to the assumption of interactivity underlying CONCAT.

However, an important difference is that in the interactive activation model the connection

strengths between features and letters and those between letters and words are all prede-

fined. This is not the case in CONCAT, where the connection values between the different

levels are gradually acquired over the course of learning. In other words, the model learns

from experience how features are distributed over objects and how objects are distributed

over contexts.

Our model also bears some similarity to an other hierarchical word-letter recognition

model based on the CALM architecture, developed by Murre et al. (1992). In that model, as

in CONCAT, the connections between the different levels are gradually learned during the

training stage. However, in contrast to CONCAT, the model of Murre et al. first has to learn

the lower-level categories (letters) separately before it can process them together to perform

the higher-level categorization (words). In the domain of object categorization, such a proce-

dure is not very plausible. Objects are never encountered in isolation, but they are always sur-

rounded by other objects and embedded in a larger context. Therefore, it is more likely that

objects and contexts are learned simultaneously. This aspect was addressed in Simulation I.

The goals of Simulation I are two-fold. First, we aim to demonstrate that CONCAT

can detect in its input regularities at multiple levels of abstractness and categorize these

regularities as objects and contexts. Moreover, we aim to show that it can learn both lev-

els of representations simultaneously. These aspects provide significant advantages over

both the interactive activation model (McClelland & Rumelhart, 1981) and the model of

Murre et al. (1992). The second goal of Simulation I is to investigate how the model’s

performance is influenced by the degree of overlap between the input patterns. The mod-

el’s input was represented as a distributed binary pattern over 12 feature detection nodes.

Two different sets of input patterns were created. In the Low-overlap condition, sparse

patterns were used in which only two out of twelve nodes were ‘‘on.’’ In the High-over-
lap condition, dense patterns were used in which, on average, six out of twelve nodes

were ‘‘on.’’ We expected that categorization performance would be better in the Low-

overlap condition than in the High-overlap condition. The model was presented with 16

different input patterns, which were clustered across four contexts. Half of the concepts

were presented in one context only; the other half of the concepts appeared in two differ-

ent contexts. As a result, each context contained six different concepts, and contexts were

partially overlapping.

The simulation procedure consisted of 140 episodes. The first 80 episodes of the simula-

tion were regarded as training episodes. The last 60 episodes were regarded as test episodes

during which the performance of the model was assessed. It is important to note that learn-

ing was not disabled during the test phase. However, since the learning rate is strongly

dependent on the novelty of the pattern and no new patterns were presented during the test

phase, learning was practically negligible. During each episode, a context was selected

semi-randomly; we ensured that all contexts were presented equally often, both during the
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training phase and during the test phase. Once a context was selected, each of the patterns

contained in that context were presented in a random order. Each pattern was presented for

a fixed number of iterations.

Activation was propagated through the model as described above. The specific parame-

ters of the simulations are given in Table A6. During the test phase, the model’s perfor-

mance was assessed in the following way. After each pattern presentation, if the Object

Module had reached convergence, the winning object node was registered. Similarly, at the

end of each context presentation, the winning context node was recorded. After completion

of the simulation, this information was aggregated into two different tables. One table dis-

played the number of times that each pattern converged on the different object nodes (see

Table 1 for an example). A similar table was created for the contexts, displaying the number

of times that each context converged on the different context nodes. The node that most

often represented a particular input pattern was labeled as the ‘‘winner’’ for that pattern.

Orthogonally, the pattern that was most often represented by a particular node was labeled

as the winning pattern for that node. This information was used to compute two measures of

performance. The Convergence Index was used as a measure of how well a particular input

pattern was categorized by a single node. It was defined as the number of times that the par-

ticular pattern was mapped onto its winning node, divided by the total number of presenta-

tions of that pattern. This resulted in a value between 0 and 1, where 0 meant that the input

pattern never reached convergence onto any node, and 1 meant optimal convergence onto a

single node. Orthogonally, the Separation Index was used as a measure of how well a partic-

ular node came to represent a single pattern. The Separation Index was computed as the

number of times that a particular node was converged on by its winning pattern, divided by

Table 1

Example of output table

Input

Pattern

No. of

Presentations

Concept Node

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 15 15

1 15 14 1

2 15 15

3 15 15

4 15 15

5 15 15

6 15 2 13

7 15 15

8 15 14 1

9 15 15

10 15 15

11 15 15

12 15 15

13 15 15

14 15 1 13 2

15 15 3 12
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the total number of times that it reached convergence. This resulted in a value between 0

and 1, where 0 meant that the node did not represent any pattern, and 1 meant that the node

only represented its winning pattern. In addition to these measures, convergence times were

logged for each pattern presentation. Convergence time was defined as the number of itera-

tions needed by the Object Module to reach convergence.

The simulation procedure was replicated ten times for each of the two different input sets.

This was done in order to get an indication of the variance in performance as a result of dif-

ferent random settings used in each of the replications. Convergence in the Object Module

was influenced by the amount of overlap between the input patterns. In the Low-overlap

condition, the Object Module needed on average 11.3 iterations to reach convergence.

In the High-overlap condition, an average of 16.6 iterations was needed to reach conver-

gence. Table 2 shows the Convergence Index and Separation Index of the Object Module

and the Context Module. In both conditions of pattern overlap, the model performs quite

well, resulting in high Convergence and Separation Indexes (all above 0.80). Although per-

formance is better in the Low-overlap condition, the model still performs reasonably well in

the High-overlap condition.

These results show that the model can learn to categorize concepts and contexts simulta-

neously. This is an important and novel finding. Previous simulations with a hierarchical

CALM network have shown that it is possible to perform hierarchical categorization (Murre

et al., 1992, 1992). In those simulations, however, the model first learned the lower-level

categories separately, before learning the higher-level categories. In contrast, for CONCAT

it is not necessary to learn object representations separately before learning them within

their contexts. In other words, the current simulation demonstrates that it is possible to learn

categories at both levels at the same time.

3.2. Simulation II: Influence of context feedback on categorization of ambiguous patterns

The aim of Simulation II was to investigate the role of context feedback on the categori-

zation of ambiguous input patterns. Oliva and Torralba (2007) argued that the identification

of ambiguous objects is constrained by the scene context. Similar effects may occur in

language processing. For example, Zeelenberg et al. (2003) showed that semantic priming

of ambiguous words (e.g., ORGAN) is context-dependent. During the first phase of their

experiment, which served as an incidental learning task, participants performed a

Table 2

Results of Simulation I

Input Module Convergence Index Separation Index

Low overlap Concept Module 0.98 0.96

Context Module 0.94 0.95

High overlap Concept Module 0.88 0.85

Context Module 0.83 0.82

Note. Convergence Index and Separation Index of the Concept Module and Context Module under

conditions of low and high pattern overlap.
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word-completion task. Ambiguous words had to be completed in a sentence that biased one

of its two possible meanings. For example, for the word ORGAN the sentence was either

‘‘The liver is an important o.... of the human body,’’ or ‘‘Kevin played hymns on the o....’’

In the second phase, participants performed a word association task. They received a cue

word and had to write down the first related word that came to mind. Cues for the ambigu-

ous words were related to one of the two possible meanings. For the word ORGAN the cue

was either liver or piano. Ambiguous words were more likely to be produced if the cue

(e.g., piano) was congruent with the sentence context of the first phase of the experiment

(‘‘Kevin played hymns on the o....’’). This shows that context information strongly biases

the interpretation of ambiguous words.

The influence of context on the interpretation of ambiguous stimuli was studied in

Simulation II. The model learned to categorize two highly overlapping input patterns,

among other, less overlapping, patterns. The highly overlapping patterns differed by

only two nodes (out of a total of 12 nodes). During the training stage, the two overlap-

ping patterns were presented in two different contexts. During the test stage, instead of

the original patterns, an ambiguous pattern was presented that equally deviated from

each of the two patterns (see Table 3 for an example). This input was presented to two

different versions of the model. In the Feedback-present simulation condition, feedback

input was allowed to propagate from the Context Module to the Object Module. This

feedback input could facilitate categorization of ambiguous input patterns in the follow-

ing way: Since the ambiguous pattern is equally similar to both original patterns, it will

activate the two concept nodes representing those patterns to a similar degree. The

object node that is most likely within the given context will receive some extra top-

down activation from the active context node, which increases the probability that this

node will win the competition. As a result, the ambiguous pattern will be categorized

as either one of the original patterns, depending on the context in which it is presented.

In the Feedback-absent simulation condition, no feedback was propagated from the

Context Module down to the Object Module. Thus, context information could not be

used to bias categorization toward the most likely object.

In this simulation, each context consisted of four objects. During the training stage, a con-

textual episode consisted of the random presentation of each of the patterns belonging to

that context in random order, as was the case in Simulation I. During the test stage, patterns

were not presented completely randomly. Instead, the ambiguous pattern was always the last

pattern to be presented within a contextual episode. This was done to ensure that the context

representation was already active at the time of presentation of the ambiguous pattern, such

Table 3

Example of overlapping patterns and ambiguous test pattern presented in Simulation II

Concept Distributed Feature Pattern Context

1 1 0 1 1 1 0 0 1 0 1 1 0 A

2 1 0 1 0 1 0 0 1 0 1 1 1 B

Test 1 0 1 0.5 1 0 0 1 0 1 1 0.5 A ⁄ B
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that the categorization of that pattern could be biased by top-down information flowing from

the activated context. The test phase was repeated with the original input patterns instead of

the degraded patterns, in order to verify that the original patterns were categorized correctly.

The model’s performance in the ‘‘ambiguous’’ test stage was compared to its performance

in the ‘‘original’’ test stage, which resulted in a measure of categorization accuracy. As in

Simulation I, the whole procedure was replicated ten times with both versions of the model.

The results of Simulation II are presented in Fig. 6, which displays the categorization of the

ambiguous pattern. As becomes clear from the figure, context feedback influenced the cate-

gorization of the ambiguous pattern in a consistent manner. In the Feedback-present condi-

tion, the ambiguous pattern was most likely to be categorized as the object that was

congruent with the context in which it appeared. No such bias existed in the Feedback-

absent condition, where the pattern was equally likely to be categorized as the context-

related object or the context-unrelated object. Note that this simulation does not show that

context feedback necessarily results in higher accuracy than when no feedback is present.

If a contextually incongruent pattern is presented, it may erroneously be categorized as the

object that is more likely in the current context. However, given that objects most often

occur in a congruent context, the context bias will usually lead to better performance.

3.3. Simulation III: Influence of context feedback on categorization of degraded patterns

The role of the feedback connections was further investigated in Simulation III. The goal

of this simulation was to investigate how context information influences the categorization

of degraded input. In real-life object categorization, the bottom-up feature input is often

incomplete, for example, when the object is partially occluded from view, or when it is dark

or noisy. In those cases, the context may facilitate categorization by priming those objects
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Fig. 6. Results of Simulation II. Object categorization of ambiguous input patterns by feedback-present or feed-

back-absent version of the model.
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that are likely to occur. This has indeed been found in several studies. For example, Özcan

and van Egmond (2009) showed that households producing sounds that were difficult to rec-

ognize when presented in isolation were recognized more accurately when congruent visual

context information was presented. Similarly, Bar and Ullman (1996) showed that unclear

images were recognized faster and more accurately in the presence of a contextually related

image than in isolation.

During the test phase of this simulation, the model received a number of degraded input

patterns, and categorization performance on these patterns was assessed. One of the patterns

from each context was degraded by reducing all units with a value of 1 and increasing all

units with a value of 0 by a fixed value, corresponding to the severity of degradation. Rang-

ing from mild to severe degradation, patterns were degraded by a value of 0.2, 0.25, 0.3,

0.35, and 0.4, respectively. Similar to the procedure of Simulation II, the input patterns were

presented to two versions of the model. In the Feedback-present condition, feedback was

propagated from the Context Module down to the Object Module. In the Feedback-absent
condition, no such feedback was propagated through the network. Since the bottom-up input

from the Feature Detection Layer to the Object Module is degraded, it may not activate the

correct concept node to a sufficient degree to let it win the competition. Top-down activa-

tion from the active context node may facilitate the categorization, by enhancing the object

nodes that are most likely given the current context. Therefore, we expected that perfor-

mance in the Feedback-present condition would be better than in the Feedback-absent

condition.

The training phase was similar to that of Simulation II, except that there were no

pairs of highly overlapping input patterns. As in Simulation II, each context included

four objects, such that contexts were nonoverlapping. During the training stage, a con-

textual episode consisted of the random presentation of each of the object patterns

belonging to that context. During the test stage, the degraded pattern was always pre-

sented last within a contextual episode. This was done to ensure that the Context Mod-

ule had already categorized the context at the time of presentation of the degraded

pattern, such that the categorization of that pattern could be biased by top-down infor-

mation flowing from the active context node.

The results of Simulation III are displayed in Fig. 7. Fig. 7A shows the categorization

accuracy of the Feedback-present and the Feedback-absent versions under the different

degrees of degradation. As predicted, categorization performance was better in the Feed-

back-present than in the Feedback-absent condition, except when the pattern was only

mildly (20%) degraded.

Fig. 7B shows the average number of iterations needed to reach convergence. Conver-

gence times were faster in the Feedback-present version than in the Feedback-absent

version. These findings corroborate the results of Simulation II, by demonstrating how con-

text information can constrain object categorization. This is especially useful when the bot-

tom-up input is ambiguous or degraded and therefore provides insufficient information to

enable successful categorization of the pattern. When the input pattern is complete or only

mildly degraded, there is no difference in performance between the Feedback-present and

Feedback-absent version of the model.
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3.4. Simulation IV: Categorization of objects in congruent and incongruent contexts

Several studies demonstrate that objects are recognized faster and more accurately when

they are presented in a congruent context than when they are presented in an incongruent

context (e.g., Davenport, 2007; Davenport & Potter, 2004; Joubert, Fize, Rousselet, &

Fabre-Thorpe, 2008; Palmer, 1975). This aspect of concept categorization was studied in

Simulation IV. In the test phase of this simulation, complete and degraded input patterns

were presented either in the same context as in the training phase (congruent context) or in a

different context than in the training phase (incongruent context). We expected that patterns

presented in a congruent context would be categorized more accurately than patterns

presented in an incongruent context. The training phase was similar to Simulations II and

III. During the test stage, the test pattern was either presented in a congruent context or in

an incongruent context. As in Simulations II and III, test patterns were always presented last
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within a contextual episode, to ensure that the context had been categorized before the test

pattern was presented.

The results of Simulation IV are displayed in Fig. 8. Fig. 8A shows the categorization

accuracy of the model in the congruent and incongruent context for the different degrees of

degradation. Fig. 8B shows the convergence times in the congruent and incongruent con-

text. As predicted, the model performed better in the congruent context than in the incongru-

ent context. In addition, convergence times were slightly faster in the congruent context

than in the incongruent context. These results are in line with behavioral data demonstrating

that object recognition is faster and ⁄ or better when an object is presented in a congruent

context than when it is presented in an incongruent context.

4. General discussion

In this paper, we argue that people create mental representations at multiple hierarchical

levels. We specifically focus on object representations and context representations. We

assume that both types of representation are acquired through experience, by extracting the

statistical regularities that emerge during repeated experiences. Features that frequently
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co-occur in time and space are likely to belong to the same object. At a coarser temporal

and spatial scale, objects that frequently co-occur are likely to belong to the same context.

Thus, while objects can be defined as patterns of co-occurring features, contexts can be

defined as higher-order patterns of co-occurring objects. We furthermore propose that object

representations and context representations are dynamically connected to each other. When

an object representation is activated, activation will spread toward the contexts in which it

frequently occurs, and reversely, when a context representation is activated, activation will

spread toward the objects that are likely to occur in this context. As a result, cognitive

processing can be tailored to the current situation. As Yeh and Barsalou argued, ‘‘because

specific entities and events tend to occur in some situations more than others, capitalizing

on these correlations constrains and thereby facilitates processing. Rather than having to

search through everything in memory across all situations, the cognitive system focuses on

the knowledge and skills relevant in the current situation. Knowing the current situation

constrains the entities and events likely to occur. Conversely, knowing the current entities

and events constrains the situation likely to be unfolding’’ (Yeh & Barsalou, 2006, p. 350).

Consistent with this reasoning, the results of our simulations show that context informa-

tion can indeed play an important role in guiding and constraining conceptual processing.

Our findings are in line with many studies across different domains of cognitive science

(perception, language comprehension, memory, concept representation), demonstrating a

variety of context effects (e.g., Barsalou, 1982; Chaigneau et al., 2009; Davenport & Potter,

2004; Godden & Baddeley, 1975; Mandler & Parker, 1976; Miller & Gazzaniga, 1998;

Özcan & van Egmond, 2009; Zeelenberg et al., 2003). Furthermore, in computer vision,

object recognition can be improved by employing context information based on the interac-

tion between objects or global scene statistics (Galleguillos & Belongie, 2010).

An interesting and novel aspect of our model is that context information is essentially

derived from the bottom-up input. The different levels of the model detect structure (correla-

tional patterns) in this input at different levels of abstractness (or grain size). This distin-

guishes CONCAT from other models (e.g., Meeter, Talamini, & Murre, 2002; Rudy &

O’Reilly, 2001), in which context information typically comes from an external source.

We do not claim that CONCAT is an exhaustive model of concept representation. Some

empirical findings are inconsistent with the model. For example, it has been shown that

visual scenes (contexts) can be recognized at a glance (e.g., Oliva, 2005), and then facilitate

recognition of objects within (e.g., Bar, 2004; Torralba, 2003). This suggests that context is

not only activated indirectly through its objects but also directly through rapid processing of

its global features and coarse spatial information (Oliva & Torralba, 2001; Schyns & Oliva,

1994). Furthermore, although CONCAT is composed of CALM modules which have some

biologically plausible properties (e.g., modularity, unsupervised learning and novelty-

dependent learning), we are hesitant to connect the elements of CONCAT to specific brain

areas or neurological processes. The model is based on assumptions about the hierarchical

structure of the conceptual system and the way in which representations of different levels

may interact, and it should be regarded as a feasibility test of these assumptions.

The idea that the conceptual system is composed of multiple hierarchically organized

modules bears a similarity to Damasio’s theory of Convergence Divergence Zones
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(Damasio, 1989; Meyer & Damasio, 2009). Convergence divergence zones (CDZs) are

brain areas that function as association areas by registering the temporal co-occurrences

between patterns of activation in lower-level areas. During interaction with an object,

patterns of activation arise across different sensorimotor areas, coding for various aspects of

the interaction. The temporally coincident activity at separate sites is bound by a CDZ.

In order to recall a particular event, the CDZ (partially) reconstructs the original pattern of

activation in the sensorimotor sites through divergent back projections. Damasio argues that

multiple convergence zones can be organized in a hierarchical manner, each representing

input at different levels of abstractness: ‘‘There are convergence zones of different orders;

for example, those that bind features into entities, and those that bind entities into events or

sets of events, but all register combinations of components in terms of coincidence or

sequence, in space and time’’ (Damasio, 1989, p. 26). Although CONCAT currently encom-

passes only two levels, we assume that it is possible to extend its logic to build a network

composed of multiple layers that categorize patterns occurring at various spatial and tempo-

ral scales. In addition, we assume that it is possible to implement feedback connections

between those layers, similar to the divergent pathways proposed by the CDZ theory.

Another parallel can be drawn to a recent theory of word meaning, proposed by Andrews

et al. (2009). They argue that word meaning is based on two sources of information. The

first source is information about the sensory-motor properties of the word’s referent, as has

been proposed in many theories of word meaning (e.g., Collins & Quillian, 1969; McRae,

de Sa, & Seidenberg, 1997; Rips, Shoben, & Smith, 1973). The second source is information

about the lexical contexts in which a word occurs, as proposed by theories such as Latent

Semantic Analysis (Landauer & Dumais, 1997) and Hyperspace Analogue to Language

(Lund & Burgess, 1996). The model of Andrews et al. (2009) integrates both sources of

information (for similar work, see Steyvers, 2010). The data generated by the combined

model corresponded better to human data of semantic representations than data generated

by the separate sources. Thus, this study showed that experiential and distributional infor-

mation can be combined to yield rich and realistic representations, similar to the findings of

the present paper.

Andrews et al. (2009) define distributional data as information about the distribution of

words across linguistic contexts, and they call this type of information ‘‘intra-linguistic.’’

We would like to argue that this information might not be purely linguistic, but that it could

indirectly reflect the actual distribution of the words’ referents across real-world situations.

After all, language refers to objects and situations in the world. Words might co-occur in

language because their referents co-occur in the real world. For example, distributional theo-

ries of word meaning consider the words ‘‘cat’’ and ‘‘dog’’ as similar because they often

occur in similar sentences. However, the reason that they occur in similar sentences might

be because these sentences typically describe real-world situations in which cats and dogs

occur. In the real world, cats and dogs are often found in similar contexts (e.g., in and

around the house). As a result, the sentences describing these contexts will be similar.

Indeed, a recent study by Louwerse and Zwaan (2009) showed that the spatial distance

between pairs of U.S. cities can be derived from their distributions across texts. In the words

of Louwerse and Zwaan (2009), ‘‘cities that are located together are debated together.’’
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To sum up, while we agree with Andrews et al. (2009) that distributional data form an

important source of information about semantic or conceptual representations, we do not

agree that this information is completely linguistic. Instead, the distribution of a word across

linguistic contexts might correspond strongly to the distribution of the word’s referent

across real-world contexts (for a similar argument, see Zwaan & Madden, 2005).

Summarizing, we have stressed the importance of context information in conceptual pro-

cessing. In addition, we have demonstrated how context information can be extracted from

experience and categorized into context representations. These representations, through

their connections with associated object representations, can bias and constrain the categori-

zation of objects, which is especially useful when the bottom-up input is degraded or ambig-

uous. Including context information makes the conceptual system more adaptive and

efficient. Another important consequence of such mechanism is that it allows abstract con-

cepts, which have no perceptual features themselves, to be grounded in contextual experi-

ences. Indeed, Barsalou and Wiemer-Hastings (2005) demonstrated that abstract concepts

are largely based on situational information. They argue that it is impossible to represent an

abstract concept like TRUTH without providing information about the situation in which

this concept is set. Furthermore, although concrete concepts are typically processed better

and faster than abstract concepts, these benefits disappear when abstract concepts are pre-

sented within a relevant situation (e.g., Schwanenflugel, Harnishfeger, & Stowe, 1988;

Schwanenflugel & Stowe, 1989). Thus, context information appears to be highly relevant

for the representation of abstract concepts.

We live in a world full of regularities. Not only do we repeatedly encounter similar

things, but we also experience similar situations and find ourselves in similar environments

over and over again. Our conceptual system is specialized in extracting these regularities

from experience, in order to form mental representations of objects, events, and situations

(e.g., Chun & Jiang, 1999; Fiser & Aslin, 2001). This results in a rich hierarchically orga-

nized knowledge structure that may represent objects and contexts, as well as the connec-

tions between them. Capitalizing on these connections facilitates processing in many ways.

It enables one to select the representations that are relevant given the current context, to

know which objects to expect in a given context, where to look for those things, and how to

interact with them. In other words, it enables one to interact with the environment in a sensi-

ble and efficient manner.

Notes

1. Throughout this paper, angle brackets will be used to describe features (e.g.,

<round>), uppercase font will be used to describe concepts (e.g., BALL), and upper-

case italic font will be used to describe contexts (e.g., KITCHEN).

2. The term distributional data is borrowed from Andrews, Vigliocco, and Vinson

(2009). In their paper, however, the term had a slightly different meaning. The authors

referred to experiential (feature-based) and distributional information as two contribu-

tors of word meaning. In their definition, distributional information refers to the
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linguistic contexts (sentences, paragraphs) in which a word occurs. In the current

paper, distributional information refers to the actual contexts in which a concept

occurs.

3. The Event Segmentation Theory (Zacks, 2007) supposes that the perceptual sys-

tem not only perceives current input but also predicts what will be perceived next.

This prediction is based on the current input as well as on more stable informa-

tion about the ongoing event, which is represented as an event model. Event

boundaries are usually characterized by a relatively high prediction error, which

occurs when the system’s prediction is substantially different from the actual

input. Whenever an event boundary is perceived, the event model is reset in order

to represent the new event.
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Appendix

Table A1

Weight values of connections within CALM Modules, as specified by Murre et al. (1992)

Weights Description Value

Up Connects R-node to its matched V-node 0.5

Down Connects V-node to its matched R-node )1.2

Cross Connects V-node to all nonmatched R-nodes )10.0

Flat Interconnects all V-nodes (no self-connections) )1.0

Low Connects R-node to A-node 0.4

High Connects V-node to A-Node )0.6

AE Connects A-node to E-node 1.0

Strange Connects E-node to R-nodes 0.5

Inter Initial value of intermodular adaptive weights 0.6

Table A2

Equation parameters of Object Module

Globals Description Value

k Decay of activation in an iteration 0.05

L Learning competition between bottom-up connections 1.0

K Maximum value of bottom-up weights 1.0

d Base rate of learning 0.001

WlE Virtual weight between E-node and learning rate 0.015

Ch High convergence threshold 0.001

Cl Low convergence threshold 0.0001

Table A3

Equation parameters of Context Module

Globals Description Value

k Decay of activation in an iteration 0.025

L Learning competition between connections 1.0

K Maximum value of learning weights 1.0

d Base rate of learning 0.005

WlE Virtual weight between E-node and learning rate 0.025

Ch High convergence threshold 0.001

Cl Low convergence threshold 0.0001
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Table A4

Weight values of connections between different layers of the model

Weights Description Value

R-I Connects R-node in Object Module to matched Inhibitory internode 1

R-E Connects R-node in Object Module to matched Excitatory internode 1

I-F Connects Inhibitory internode to all nonmatched Feeding nodes )5

E-F Connects Excitatory internode to matched Feeding node 1

F-M Connects Feeding node to matched Memory Buffer node 5

M-Cv Connects Memory Buffer nodes to Convergence node 1

Cv-C Connects Convergence node to R-nodes in Context Module 2

M-C Initial value of connections between Memory Buffer nodes and R-nodes in Context Module 0.6

FB Initial value of Feedback connections (from R-nodes in Context Module to R-nodes

in Object Module)

0.6

Table A5

Equation parameters of other elements of the model

Parameter Description Value

kinter Decay of activation of internodes 0.1

kmem Decay of activation of nodes in Memory Buffer 0.001

b Gain of input function of Convergence Node )20

h Threshold of input function of Convergence Node

(dependent on number of concepts per context)

1.5–3

Inht Tonic inhibition to R-nodes in Context Module )1.05

Lfb Learning competition of feedback connections 1.5

Kfb Maximum value of feedback weights 1.5

dfb Base rate of learning of feedback connections 0.005

Table A6

Simulation parameters

Description Value

Number of nodes in Feature Detection Layer 12

Number of nodes in Object Module 16

Number of nodes in Context Module 4

Iterations per concept presentation 60

Number of context episodes during training 80

Number of context episodes during testing 20

Number of iterations during short reset interval 120

Number of iterations during long reset interval 3000
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